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Abstract  

Wavelets are mathematical functions that are used as a basis to write down complex functions in an 

easy way. They cut up the data into its components of frequency so that we can study each part with 

more preciseness. It is also scaled for our convenience. Wavelets can also be termed as a tool to 

decompose signals and trend as a function of time. Wavelets are used in the applications of Fourier 

Analysis as wavelets give more freedom to work on. In this paper, a basic idea of wavelet is with the 

idea of function approximation. Apart from pure mathematical areas, wavelets are a very useful tool 

in analyzing a time series. Wavelets are used for removing noise from a statistical data which is one 

of the most important jobs in data analysis. The applications of wavelets not only stop here, but also 

find usage in quantum physics, artificial intelligence and visual recognition. An important aspect of 

wavelets, image processing is covered in brief in this paper which will give a concise idea of how 

digital images are stored.  
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Introduction 

Wavelet theory has many potential applications. All wavelet transforms are related to harmonic 

analysis because they can be interpreted as different types of time-frequency representations of time-

continuous (analog) signals. A wavelet approximation of a signal can be obtained by performing a 

continuous discrete wavelet transform on the signal using a discrete-time filter bank arranged in 

binomial (octave band) architecture. The sign is tested and changed in its direction. In the language of 

wavelets, the shift and scaling coefficients of a filter bank are their names. Filters with either a limited 

or infinite impulse response may be included in these filter banks. The uncertainty principle, which 

serves as the foundation for not only Fourier Analysis but also the sampling theory that is associated 

with it, governs the wavelets that combine to produce a continuous wavelet transform (CWT). It is 

impossible to accurately relate time and frequency response scales to events in the signal containing 

them. The amount of the vulnerabilities in the time reaction scale and the recurrence reaction scale is 

obliged under a specific worth. Thus, the constant wavelet change of this sign's scaleogram recognizes 

a solitary point, rather the entire area in the time scale plane. Additionally, discrete wavelet bases may 

be associated with a number of uncertainty concepts. There are three main branches of the wavelet 

family: Multi-resolution based Wavelet Transforms, Continuous Wavelet Transforms, and Discrete 

Wavelet Transforms. 

 

Definition 

A "wavelet" is a type of oscillating evanescent wave with a limited expansion time that can be used to 

break up the time-frequency plane into discrete elements with different temporal underpinnings. Most 

wavelets are planned considering specific sign handling well-disposed highlights. Thus, a wavelet is a 

special kind of oscillation that looks like a wave and has amplitude that varies from zero to positive or 
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negative values and back to zero. By definition of the term itself, wavelets are "short oscillations". A 

wavelet classifier was developed based on the number and direction of the pulses. On account of their 

remarkable properties, wavelets might be utilized really in signal handling. 

 
 Mexican-hat Wavelet 

For example, a wavelet can be designed to have a short duration of about tenths of a second and an 

intermediate C frequency. This could be the look of a wavelet. Assuming that this wavelet was 

convolved with a sign got from a recorded tune, the subsequent sign may be utilized to distinguish the 

exact time that the Center C note was played. If and only if a wavelet and a signal share a characteristic, 

then there is a mathematical correlation between the two. Correlation is central to many practical 

applications of wavelets. 

The Fourier transform does not take into account any changes in the wave-number or frequency over 

time or space when analyzing a signal. Also, Fourier transform analysis cannot determine the physical 

state of a signal when it contains spikes or other discontinuities. The concept of a wavelet is not a new 

one. Back in the early 1800s, Joseph Fourier came up with the notion of approximating a function by 

utilizing the sine and cosine functions. This is where the idea originated. Notwithstanding, in wavelet 

examination, the scale at which we see a capability uncommonly affects the entire examination. 

Several wavelet algorithms can perform the same processing function at a variety of scales or 

resolutions. A wavelet algorithm's ability to predict the size of features in a signal or function using a 

"large window" is fundamental to its maturity." In a similar vein, if we examine a signal using a 

"narrow window," we will anticipate the presence of few characteristics. This creation of wavelets is 

not only practical but also really interesting. Yet, in Fourier analysis, signals or functions are 

approximated by making use of the sine and cosine bases. This is despite the fact that engineers and 

scientists have spent many decades working toward the goal of approximating functions more 

precisely. These functions do not operate on a local level (and stretch out to infinity). Hence, this is 

not even close to being an accurate representation of sharp spikes. Nonetheless, using wavelet analysis, 

we are capable of estimating a function or signal that contains severe discontinuities. Wavelets can 

also be thought of as a collection of non-linear bases. The wavelet basis functions are selected in 

accordance with the function that is being estimated in order to project (or approximate) a function in 

terms of wavelets. 

 

Applications of Wavelets 

Wavelets are versatile mathematical tools used in a wide range of applications across different fields. 

Here are some notable applications: 

1. Signal Processing 

• Compression: Wavelets can compress signals, images, and video by representing them with fewer 

coefficients while preserving essential information. 

• De-noising: Wavelets help in removing noise from signals and images while retaining important 

features. 

• Analysis: Time-frequency analysis of signals, which is useful in various fields such as audio 

processing and biomedical signal analysis (e.g., ECG). 

2. Image Processing 

• Compression: JPEG2000, a widely used image compression standard, relies on wavelet transform. 
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• De-noising and Enhancement: Wavelets can enhance images by removing noise and preserving 

edges and textures. 

• Edge Detection: Wavelet transforms can detect edges and other features in images, useful in 

computer vision and medical imaging. 

3. Biomedical Applications 

• ECG and EEG Analysis: Wavelets help in analyzing and interpreting electrocardiograms (ECG) 

and electroencephalograms (EEG) for diagnosing heart and brain conditions. 

• Medical Imaging: Wavelet-based techniques improve the quality and analysis of medical images 

like MRI and CT scans. 

4. Finance and Economics 

• Time Series Analysis: Wavelets are used for analyzing financial time series data to identify trends, 

cycles, and irregular patterns. 

• Forecasting: Wavelet transforms can improve forecasting models by decomposing complex 

financial data into simpler components. 

5. Geophysics and Meteorology 

• Seismic Data Analysis: Wavelets are used to process and interpret seismic data for oil exploration 

and earthquake analysis. 

• Climate Data Analysis: Wavelets help in analyzing climate data to detect patterns and anomalies 

over time. 

6. Communication Systems 

• Signal Transmission: Wavelet-based modulation techniques are used in communication systems 

to improve data transmission efficiency and robustness. 

• Error Detection and Correction: Wavelets help in detecting and correcting errors in transmitted 

signals. 

7. Computer Graphics 

• Texture Analysis and Synthesis: Wavelets are used in computer graphics for texture mapping and 

rendering, providing more realistic textures and efficient storage. 

8. Data Mining and Machine Learning 

• Feature Extraction: Wavelets help in extracting features from large datasets, improving the 

performance of machine learning algorithms. 

• Classification and Clustering: Wavelet transforms are used for data dimensionality reduction, 

enhancing the accuracy of classification and clustering tasks. 

9. Audio Processing 

• Speech Recognition: Wavelets help in analyzing and processing speech signals for voice 

recognition systems. 

• Music Analysis: Wavelets are used in music analysis for identifying patterns, rhythms, and 

enhancing audio quality. 

10. Astronomy 

• Signal Detection: Wavelets assist in detecting and analyzing signals from space, such as 

gravitational waves and cosmic microwave background radiation. 

• Image Processing: Enhancing and analyzing astronomical images to detect celestial objects and 

phenomena. 

Wavelets provide a powerful framework for analyzing and processing data across various domains due 

to their ability to represent data at multiple resolutions. 

Advanced applications of wavelets involve leveraging their multi-resolution analysis and time-

frequency localization properties to solve complex problems across various high-tech fields. Here are 

some sophisticated applications: 

1. Quantum Computing and Quantum Mechanics 

• Quantum Wavelet Transforms: Wavelets are used to analyze quantum states and to develop 

efficient quantum algorithms. 

• Quantum Image Processing: Wavelets help in the development of quantum algorithms for image 

compression, edge detection, and de-noising at a quantum level. 

2. Machine Learning and Deep Learning 
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• Wavelet Neural Networks (WNNs): Combining wavelets with neural networks to improve feature 

extraction and learning processes, leading to better performance in tasks like image recognition, natural 

language processing, and anomaly detection. 

• Wavelet Scattering Transforms: Used to create robust and translation-invariant representations 

for deep learning models, enhancing their performance in tasks like texture classification and object 

recognition. 

3. Advanced Medical Imaging and Diagnostics 

• Functional MRI (fMRI) Analysis: Wavelets are used to process and analyze fMRI data for brain 

activity mapping and neurological research. 

• Medical Image Fusion: Combining images from different modalities (e.g., MRI and CT scans) 

using wavelets to provide comprehensive diagnostic information. 

4. Genomics and Bioinformatics 

• DNA Sequence Analysis: Wavelets help in identifying patterns, motifs, and irregularities in DNA 

sequences, aiding in gene prediction and disease diagnosis. 

• Protein Structure Analysis: Analyzing protein structures and dynamics using wavelet transforms 

to understand their functions and interactions. 

5. Advanced Communication Systems 

• Orthogonal Frequency Division Multiplexing (OFDM): Wavelet-based OFDM systems improve 

bandwidth efficiency and reduce interference in wireless communications. 

• Cognitive Radio: Wavelets help in spectrum sensing and management in cognitive radio networks, 

enabling dynamic spectrum allocation and efficient use of radio frequencies. 

6. Big Data and High-Dimensional Data Analysis 

• Sparse Representation and Compressed Sensing: Wavelets enable the efficient representation 

and reconstruction of high-dimensional data from sparse samples, useful in big data analytics and 

signal processing. 

• Multi-scale Data Decomposition: Decomposing large datasets into different scales using wavelets 

for better visualization, analysis, and feature extraction. 

7. Astrophysics and Cosmology 

• Gravitational Wave Detection: Analyzing data from gravitational wave detectors like LIGO and 

Virgo using wavelets to identify and characterize gravitational wave events. 

• Cosmic Microwave Background (CMB) Analysis: Wavelets are used to study the CMB radiation 

for insights into the early universe and cosmological parameters. 

8. Robotics and Autonomous Systems 

• Sensor Data Fusion: Wavelets combine data from multiple sensors in robotics to improve 

perception, navigation, and decision-making. 

• Real-Time Signal Processing: Wavelet transforms enable efficient real-time processing of signals 

in autonomous systems for tasks such as object detection and environmental mapping. 

9. Security and Cryptography 

• Steganography and Watermarking: Wavelets are used to embed and extract hidden information 

in digital media, enhancing security and copyright protection. 

• Cryptanalysis: Analyzing cryptographic algorithms and breaking codes using wavelet-based 

techniques to identify vulnerabilities. 

10. Advanced Audio and Speech Processing 

• High-Fidelity Audio Compression: Wavelets are used for lossless and high-fidelity compression 

of audio signals, improving storage and transmission efficiency. 

• Speech Enhancement and Separation: Separating and enhancing speech signals from noisy 

environments using wavelet transforms, useful in applications like hearing aids and voice-controlled 

systems. 

11. Environmental and Earth Sciences 

• Climate Modeling and Prediction: Wavelets help in analyzing and modeling climate data to 

predict weather patterns, climate change, and natural disasters. 

• Remote Sensing and Earth Observation: Processing satellite and aerial imagery using wavelets 

for applications in agriculture, forestry, and urban planning. 

12. Engineering and Manufacturing 
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• Structural Health Monitoring: Wavelets are used to analyze signals from sensors attached to 

structures (e.g., bridges, buildings) to detect and diagnose damage or stress. 

• Fault Detection in Machinery: Analyzing vibration and acoustic signals from machinery using 

wavelets to identify faults and prevent failures. 

These advanced applications demonstrate the versatility and power of wavelets in addressing complex 

problems and improving the efficiency, accuracy, and robustness of various technological and 

scientific processes. 

 

Some more Applications of wavelets 

If a signal has already been sampled, data compression typically uses an approximation of the DWT, 

whereas signal analysis typically uses the CWT. Thus, the DWT estimation is utilized in designing 

and software engineering, while the CWT is utilized in the logical examination local area. Wavelet 

transformations, like other transforms, can significantly compress data before encoding the resulting 

stream. Similar to other transformations, the procedure is similar. For example, biorthogonal wavelets 

are utilized by the JPEG 2000 picture pressure standard. The very similar features of the edges (except 

for their formation by complex wavelets) indicate that the hulls are tight (see Types of Edges in Vector 

Space) and are used for both investigation and combination. Hence, the frame is adaptable in both 

directions.  

Wavelet reduction, or the process of smoothing and de-noising data using wavelet coefficient thresh-

holding, is one such application. Smoothing and noise reduction can be achieved by adaptively thresh-

holding the wavelet coefficients corresponding to the noisy frequency components. 

Wavelet transformations are also being used in the technology of communication. The Wavelet 

Orthogonal Frequency Division Multiplexing (OFDM) modulation technique serves as the foundation 

for the HD-PLC technology, which was developed by Panasonic for use in communicating over power 

lines. The IEEE 1901 standard includes Wavelet Orthogonal Frequency Division Multiplexing 

(OFDM) as one of the auxiliary modulation schemes. Wavelet OFDM has advantages over traditional 

FFT OFDM. This is because it can generate deeper notches and does not require a guard interval, 

which is a large overhead in FFT OFDM systems. 

 

As a representation of a signal 

The representation of a signal may frequently be enhanced by the addition of sinusoids. A suddenly 

broken signal, then again, may in any case be addressed as an amount of sinusoids, yet requires an 

endless number of them. This is a delineation of the Gibbs impact. Since a limitless number of Fourier 

coefficients are required, this makes pressure, among different purposes, unfeasible. Wavelets are 

superior to other methods of representing signals with discontinuities due to their time-localized 

behavior (both Fourier and wavelet transforms are frequency-localized, but wavelets have an 

additional has the time localization property of). They may not be sparse in the Fourier domain, but 

many common types of signals can be very sparse in the wavelet domain. This is very useful in the 

rapidly evolving field of signal regeneration, especially packed detection. (Note that the short-time 

Fourier transform or STFT is also time and frequency limited, but the trade-off between frequency and 

time resolution can cause problems. Because they employ multi-resolution analysis, wavelets are better 

able to represent the signals they are applied to. 

Wavelet transforms are increasingly used in various applications, usually in place of the traditional 

Fourier transform. In many areas of materials science, such as atomic elements, chaos hypothesis, 

initial computation of gastric muscles, astronomy, handling information from gravitational wave 

drifters, thickness framework constraints, seismology, optics, instability, quantum mechanics, etc. You 

can see this change in perspective. Other areas where changes of this kind have been seen include 

electroencephalography, electromyography, electrocardiography, brain rhythms, DNA and protein 

analysis, climate science, the study of human sexual responses, speech recognition, acoustics, and 

vibration signals. , computer graphics, multi-fractal analysis, sparse coding. In computer vision and 

image processing, the standard multi-scale representation is the idea of a scale-space representation 

combined with a Gaussian derivative operator. 

 

Wavelet de-noising 
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Wavelet de-noising is a technique used to remove noise from signals, such as images or audio, by 

utilizing wavelet transforms. The process involves transforming the noisy signal into the wavelet 

domain, where the signal is represented by wavelet coefficients. Following is a basic outline of the 

steps involved in wavelet de-noising: 

1. Wavelet Transform: Apply the wavelet transform to the noisy signal to obtain the wavelet 

coefficients. This involves decomposing the signal into different levels of detail and approximation 

coefficients using a chosen wavelet function (e.g., Haar, Daubechies). 

2. Thresh-holding: Apply a threshold to the wavelet coefficients to distinguish between the noise and 

the actual signal. There are different thresh-holding techniques: 

o Hard Thresh-holding: Coefficients below the threshold are set to zero. 

o Soft Thresh-holding: Coefficients below the threshold are set to zero, and the remaining 

coefficients are shrunk towards zero. 

3. Inverse Wavelet Transform: Apply the inverse wavelet transform to the modified wavelet 

coefficients to reconstruct the de-noised signal. 

 
 

Signal de-noising by wavelet transform thresh-holding 

Utilize the opposite wavelet change to come by the end-product. 

Multi-scale climate network 

Agarwal and others proposed sophisticated linear and nonlinear wavelet-based strategies for modeling 

and analyzing climate networks on a variety of time scales. Wavelet-based multi-scale investigation 

of climatic cycles can possibly give light on framework elements that may somehow slip through the 

cracks when only one timetable is thought of. As indicated by environment networks worked from 

different SST datasets across time, this is the situation. Wavelet-based multi-scale investigation of 

climatic cycles was additionally praised by environment networks as having promising future 

applications. 

Advantage of Wavelets 

This article presents a utilization case for WT and examines its benefits over the Fourier change. 

Wavelets' ability to simultaneously localize in both the time domain and the frequency domain is one 

of their primary benefits. When the quick wavelet transform is utilized, the second major advantage of 

wavelets is that they are extremely computationally efficient. A significant advantage of wavelets is 

their capacity to separate the numerous signal components. Small wavelets can be used to select the 

smallest details of the signal, while large wavelets can be used to identify broad bars in the signal. 

Wavelet transforms allow you to decompose a signal into individual wavelets. Wavelet theory, unlike 

the Fourier transform, usually gives a good approximation of a given function f with just a few 

coefficients. This is because wavelets, which are the basis of wavelet theory, are discrete 

approximations of waveforms. Wavelet theory, unlike other types of signal analysis, can reveal 

previously obscure data features such as trends, breakdown points, self-similarities and discontinuities 

in higher derivatives. In many cases, we can de-noise or compress a signal without sacrificing quality. 

Fourier transforms are not only used in signal processing. It also finds unexpected applications. Even 

after considering this, I think it's reasonable to argue that the mathematical complexity of wavelets is 

much greater than that of the Fourier transform. The Fourier transform is actually incorporated into 
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the mathematical study of wavelets. The wide range of fields in which wavelet theory can be applied 

can be used to assess its breadth. Wavelets were initially utilized in signal processing and filtering. 

Notwithstanding, wavelets have been effectively used to different regions, like nonlinear relapse and 

information pressure. Time series determinism can be estimated using an outgrowth of wavelet 

compression. 

 

Importance of wavelets 

Wavelets, which can take on any shape or frequency, are used to represent short waves. Because they 

can take many different forms, researchers can use them to identify and match specific wave patterns 

in almost any continuous signal. As a result, their frequency, wavelength, and granular form are nearly 

limitless. Wavelets have changed the investigation of perplexing wave peculiarities in numerous 

spaces, including picture handling, correspondences, and logical information streams. 

Wavelets, according to a theoretical physicist at Johns Hopkins University, are one of the few 

mathematical discoveries that have had such a significant impact on contemporary culture. Wavelet 

theory provided a unifying framework for many applications that was otherwise unavailable, with a 

focus on speed, scarcity, and accuracy. 

The wavelet potential arose as a sort of update to a very useful numerical strategy known as the Fourier 

correction. Joseph Fourier discovered in 1807 that any periodic function defined as an equation whose 

value repeats periodically can be expressed as the sum of trigonometric functions such as sine and 

cosine. Recently, a significant mathematical advance was made because it made it possible for 

researchers to analyze a signal in real time.  

For instance, a seismologist may infer the composition of subterranean structures by analyzing the 

relative strength of various frequencies in reflected sound waves. Thus, the Fourier change has been 

instrumental in the progression of a few disciplines of exploration and industry. However, with 

wavelets the accuracy is greatly improved. Wavelets open the door to many improvements in de-

noising, image restoration, and image analysis according to applied mathematician and astronomer 

Véronique Delouille of the Royal Observatory of Belgium. De-noising, picture rebuilding, and picture 

investigation are only not many of the areas that have benefited extraordinarily from the presentation 

of wavelets. 

This is on the grounds that Fourier changes have a serious weakness in that they just give data about 

the frequencies contained in a sign, and not the time or measure of those frequencies. Dennis Gabor, a 

physicist from Hungary, made the initial attempt to solve this issue. In 1946, he suggested breaking up 

the signal into smaller, time-specific pieces before using Fourier transforms. This was whenever 

anyone first had really tried to resolve the issue. Sadly, these were difficult to evaluate in signals with 

more complex and dynamic frequency components. Geophysical engineer Jean Morlet came up with 

the idea of using frequency-dependent temporal windows for wave analysis as a result of this. Window 

sizes for the signal frequency that are large in low-frequency areas and narrow in high-frequency areas. 

Nonetheless, these windows continued to include jumbled real-life frequencies, making analysis of 

them difficult. Hence, Morlet came up with the notion of corresponding each section with a wave that 

was analogous to it and could be analyzed analytically. Because of this, he was able to understand the 

sequence of events, the general structure, and the time of each of these segments, and investigate them 

with a far better level of precision. Because of their look, Morlet gave these idealized wave patterns 

the term "ondelettes" in the early 1980s. "Ondelettes" is French for "wavelets," which literally 

translates to "small waves." Hence, a signal may be segmented into smaller sections, each of which 

would be focused around a certain wavelength, and then examined by being coupled with the wavelet 

that best matches it.  

To continue with the previous illustration, if we were now presented with a pile of cash, we would be 

aware of how many of each type of note was there in the pile. 

  

Orthonormality Analysis                                 

A function is considered to have band limitations if the support of is confined inside an interval that 

has a limited length. The band-limited orthonormal wavelets are what we focus on studying here. Two 

straightforward equations that, when solved, reveal the orthonormality of a system of the type 



98                                                        JNAO Vol. 15, Issue. 2, No.1 :  2024 

                          
are discussed further in depth previously. 

If we assume that ψ is an orthonormal wavelet, then there are a few things that need to be said about 

the system  is orthonormal, where  The system

 is orthonormal, as said in preposition, is synonymous with 

                         
After making certain adjustments to the variables, it was discovered that - 

 
This demonstrates that the system when the above mentioned equation is met, is orthonormal for the 

cadi fixed j variable. If j is greater than n, then the state of the variables has changed. x-2-n (y+m) 

shows that  where Re-Using this as a label, it is easy to show 

that the orthogonality between m for j > n and can be reduced down to the orthonormality of when j > 

0 and This implies, per the Plancherel theorem, that, for  

 

 

 
Thus,  

 

 
for all That demonstrates 

for virtually everywhere on     

Therefore, equation is necessary and adequate conditions for the system's orthonormalityIt has been 

noticed that the two series represented by the equations converge for almost every situation  

If this is how it is defined, then… 

                    
Later, a shift in the values of the variables in conjunction with the Schwartz inequality provides 

 

                        

                     
This demonstrates that for all   and, thus, this produces the practically everywhere absolute 

convergence of the series when j = 0 and j  0 in above equations, respectively. Projection orthogonal 

to the surface of onto Wj, will be investigated right now. 

Where 
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It is well knowledge that  

Because it serves as an orthonormal foundation for Wj, 

               
It may be seen that is a foundation for orthonormalization of  

                       

The factor originates from Plancherel's theorem, and it serves to standardize the Therefore, it 

is possible to write that 

                    

Let  and 

                                   
The very last function is both the functions and time are periodic. 

                                
Using the same periodization justification, the outcome is - 

 

                   

                                          

The internal product is > is the one that's connected to   hence 

                     
Combining convergence in    

It has been discovered that 

 
 

Theorem 

Suppose  

(i) if and only if it is orthogonal to Wj. 

for almost every  

(ii) There is a projection operator Qjand  

for almost every  
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Conclusion 

Here we study the applications of wavelet and its useful areas. Wavelets are functions that are used in 

order to maintain track of information about a signal's frequency as well as its time component. They 

may be used to zoom out in order to identify long, slow oscillations or zoom in order to focus on small 

bursts of continuous signal. A wavelet is a kind of waveform that has an essentially restricted duration 

and has an average value that is either zero or a nonzero norm. 

Wavelets are functions that are used in order to maintain track of information about a signal's frequency 

as well as its time component. They may be used to zoom out in order to identify long, slow oscillations 

or zoom in order to focus on small bursts of continuous signal. 

Implementing fundamental computer algebra algorithms in Scilab allows for the introduction of the 

wavelet transform utilizing the Haar wavelet. In this article, we have discussed a few of the 

fundamental requirements and qualities that are possessed by a wavelet, as well as its interaction with 

scaling functions and filters. The compact support that the Haar wavelet has enables it to provide 

superior analytical findings, and these results may be localized not only in the frequency Wavelets are 

mathematical functions that can break down data into multiple frequency components that can then be 

examined separately at a level of detail that varies with the component's size. When it comes to 

analyzing signals with discontinuities and sharp spikes, as is the case in many physical settings, these 

methods have advantages over the more common Fourier methods. Either the frequency domain or the 

time domain can be used for a signal analysis. The modern formulation of partial differential equations 

uses the Fourier transform as the foundation for identifying the objects of study, while the Fourier 

transform itself continues to serve as a tool for solving particular equations. A significant portion of 

this advancement is dependent on the extraordinary link that exists between the Fourier transform and 

the convolution, which is something that was seen back in the days of the Fourier series. 
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